Factors affecting intradiscal pressure measurement during in vitro biomechanical tests
نویسندگان
چکیده
OBJECTIVES To assess the reliability of intradiscal pressure measurement during in vitro biomechanical testing. In particular, the variability of measurements will be assessed for repeated measures by considering the effect of specimens and of freezing/thawing cycles. METHODS Thirty-six functional units from 8 porcine spines (S1: T7-T8, S2: T9-T10, S3: T12-T11, S4: T14-T13, S5: L1-L2 and S6: L3-L4) have been used. The intervertebral discs were measured to obtain the frontal and sagittal dimensions. These measurements helped locate the center of the disc where a modified catheter was positioned. A fiber optic pressure sensor (measuring range: -0.1 to 17 bar) (360HP, SAMBA Sensors, Sweden) was then inserted into the catheter. The specimens were divided into 3 groups: 1) fresh (F), 2) after one freeze/thaw cycle (C1) and 3) after 2 freeze/thaw cycles (C2). These groups were divided in two, depending on whether specimens were subjected to 400 N axial loading or not. Ten measurements (insertion of the sensor for a period of one minute, then removal) were taken for each case. Statistical analyses evaluated the influence of porcine specimen and the vertebral level using a MANOVA. The effect of repeated measurements was evaluated with ANOVA. The difference between freeze/thaw cycles were analysed with U Mann-Whitney test (P≤0.05). RESULTS Without axial loading, the F group showed 365 mbar intradiscal pressure, 473 mbar for the C1 group, and 391 mbar for the C2 group. With 400N axial load, the F group showed intradiscal pressure of 10610 mbar, the C1 group 10132 mbar, the C2 group 12074 mbar. The statistical analysis shows a significant influence of the porcine specimen (p<0.001), with or without axial loading and of the vertebral level with (p=0.048) and without load (p<0.001). The results were also significantly different between the freeze/thaw cycles, with (p<0.001) and without load (p=0.033). Repeated measurement (without load p = 0.82 and with p = 0.56) did not show significant influence. CONCLUSIONS The results tend to support that freezing/thawing cycles can affect intradiscal pressure measurement with significant inter-specimen variability. The use of the same specimen as its own control during in vitro biomechanical testing could be recommended.
منابع مشابه
Biomechanical Determination of Distal Level for Fusions across the Cervicothoracic Junction
Study Design In vitro testing. Objective To determine whether long cervical and cervicothoracic fusions increase the intradiscal pressure at the adjacent caudal disk and to determine which thoracic end vertebra causes the least increase in the adjacent-level intradiscal pressure. Methods A bending moment was applied to six cadaveric cervicothoracic spine specimens with intact rib cages. Intradi...
متن کاملPreliminary Investigations on Intradiscal Pressures during Daily Activities: An In Vivo Study Using the Merino Sheep
PURPOSE Currently, no studies exist, which attest the suitability of the ovine intervertebral disc as a biomechanical in vivo model for preclinical tests of new therapeutic strategies of the human disc. By measuring the intradiscal pressure in vivo, the current study attempts to characterize an essential biomechanical parameter to provide a more comprehensive physiological understanding of the ...
متن کاملSingle-Level Rigid Fixation Combined with Coflex: A Biomechanical Study
BACKGROUND The purpose of this biomechanical in vitro study was to compare the kinematics and intradiscal pressure achieved with 2 methods: L4-L5 pedicle screw-rod fixation (PSRF) with an upper L3-L4 Coflex device and L4-L5 PSRF alone. The results were used to characterize the biomechanics of the topping-off operation with a Coflex device for the lumbar motion segment adjacent to single-level r...
متن کاملBiomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain.
OBJECT The objectives of this study were to compare the biomechanical effects of five lumbar reconstruction models on the adjacent segment and to analyze the effects of three factors: construct stiffness, sagittal alignment, and the number of fused segments. METHODS Nondestructive flexion-extension tests were performed by applying pure moments to 10 calf spinal (L3-S1) specimens. One-segment ...
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کامل